

© Copyright 2001 by the American Chemical Society

VOLUME 105, NUMBER 34, AUGUST 30, 2001

LETTERS

Anomalous Magnetic Behaviors of O₂-CO₂ Mixed Solid

A. Tohdoh and K. Kaneko*,[†]

Physical Chemistry, Material Science, Graduate School of Natural Science and Technology, and Center for Frontier Electronics and Photonics, Chiba University, 1-33 Yayoi, Inage, Chiba 263, Japan

Received: April 19, 2001; In Final Form: June 26, 2001

The temperature dependence of the magnetic susceptibility (χ) of O₂ and CO₂ mixture was measured as a function of the mole fraction of CO₂ over 1.9–100 K. The χ value was remarkably depressed by the coexistence of CO₂, although a change in χ due to $\alpha - \beta$ and $\beta - \gamma$ phase transitions of solid O₂ was observed. The remarkable depression of the χ of the CO₂–O₂ mixture indicated the presence of new compound having the temperature independent-magnetic susceptibility. The relationship between the temperature-independent magnetism and the CO₂–O₂ composition intensively suggests the formation of stoichiometric compounds of CO₂ and O₂, such as clathrate compounds.

Introduction

The ground state of O_2 is triplet, showing a typical paramagnetism in the gas phase. It is well-known that solid O_2 (*s*- O_2) has three polymorphs of α , β , and γ . The α - β and β - γ transitions show explicit anomalies in the magnetic susceptibility due to the corresponding phase transitions at 23.8 and 43.8 K.^{1,2}

The binary mixture of simple gases such as O_2 , N_2 , CO_2 , and rare gases have been studied as model molecular systems. X-ray diffraction study gave the phase diagram of O_2 and N_2 , which indicates many phase transitions in the solid phase.³ Raman study⁴ suggested the presence of a new phase transition that was not observed by the X-ray diffraction approach. The fundamental understanding of the O_2 and N_2 mixture should be helpful to design a new air separation technology.

In the case of O_2 -Ar binary system, X-ray diffraction study showed the absence of solid-phase transition in the mole fraction range of Ar from 0.5 to 0.8. The mixture of Ar and O_2 of the above composition has a hexagonal close packed structure, which is completely different from the structure of pure solid O_2 .⁵ On the other hand, the heat capacity measurement of the Ar-O₂ system indicated the presence of a "hump"-type phase transition at 0.6 of Ar mole fraction and 14–25 K, not evidenced with X-ray diffraction.⁶ Thus, the fundamental study on the O₂ based-molecular solid should be carried out not only by X-ray diffraction, but also by other techniques such as Raman spectroscopy.^{7–11} Furthermore, magnetic susceptibility measurement is a potential method for O₂ based molecular solids because the magnetic interaction is quite sensitive to the local structure around an oxygen molecule. The structural study on the O₂ based-molecular solids should provide a new aspect for the intermolecular interaction.

As a CO₂ molecule has a great quadrupole moment,¹² the presence of CO₂ molecules should intensively affect the solid O₂ structure. The magnetic susceptibility of the solid O₂ can quite sensitively detect the local structural change of an oxygen molecule. The low-temperature magnetic susceptibility of the O₂-CO₂ mixture was measured over the temperature range from 1.9 to 100 K in this study. The present work describes a remarkable effect of the coexistent CO₂ on the magnetism of solid O₂.

[†] Center for Frontier Electronics and Photonics.

Figure 1. Temperature dependencies of the magnetic susceptibility of the solid O_2 - CO_2 system as a function of the CO_2 mole fraction *x*. •: x = 0, \bigcirc : x = 0.2, \Box : x = 0.3, and \diamondsuit : x = 0.5.

Experimental Section

CO₂ and O₂ gases of high purity (99.99%) were used after repeated vacuum distillations. The mixed gas of CO₂ and O₂ were kept for 90 min at 303 K after their mixing. The gas mixture was introduced into an ESR quartz tube (length: 90 mm, diameter: 5 mm), and then the quartz tube was sealed. The composition of the gas mixture was determined through measurement of the O₂ and CO₂ partial pressures at 303 K. The mole fraction of CO₂ is designated as *x*. The quantity of O₂ was determined from the O₂ pressure and the volume of the sealed quartz tube. The magnetic susceptibility, χ , was measured with a SQUID magnetometer system MPMSR2 (Quantum Design) over the temperature range from 1.9 to 100 K at a magnetic field of 1*T*. The magnetic susceptibility, χ , of the quartz tube was subtracted.

Results and Discussion

Temperature dependences of the magnetic susceptibility χ of the O₂-CO₂ system are shown in Figure 1 as a function of mole fraction x of CO₂. Pure O₂ shows explicit anomalies at the phase transition temperatures of 23.9 K(α - β), 43.8 K(β - γ), and 54.4 K(γ -liquid), which agree with the literature values.^{1,2} The anomalies due to α - β and β - γ transitions are preserved at the same temperatures, even in the O₂-CO₂ system, although the χ is remarkably depressed by the coexistence of CO₂. As the CO₂ molecule has no spin, the observed changes in the magnetism stem from the change in the O₂-O₂ and/or O₂-CO₂ intermolecular structure. In this work, the magnetic susceptibility data of liquid and gaseous O₂ above 54.4 K are not sufficiently discussed.

The magnetic susceptibility depression is not proportional to the CO₂ mole fraction *x*. Therefore, we assumed that the coexistent CO₂ changes the magnetic interaction between O₂ molecules through the formation of a weakly interacted compound such as clathrate compound. We introduce the temperature-independent magnetic susceptibility (χ_{ti}) due to the above compound formation. As the O₂-CO₂ system should consist of pure O₂ and the O₂-CO₂ compound, the observed magnetic

Figure 2. Fitting procedure of the magnetic susceptibility of the O₂– CO₂ system of x = 0.3. O: Experimental data, $- - -: \chi_{ti}$, $- -: b_0\chi_0$, and $-: (\chi_{ti} + b_0\chi_0)$.

susceptibility χ_{ob} is expressed by χ_{ti} and the magnetic susceptibility of pure O₂, χ_{O} , as given by

$$\chi_{\rm ob}(T) = \chi_{\rm ti} + b_{\rm O} \cdot \chi_{\rm O}(T) \tag{1}$$

Here χ_{ti} and the constant b_0 are determined by the fitting procedure, as shown in Figure 2. The fitting over the temperature range from 1.9 to 50 K is well done. Nevertheless, the calculated $\chi_{ob}(T)$ using eq 1 deviates above 50 K, and the deviation becomes significant with increasing temperature. This is because the O₂ partial pressure of the O₂-CO₂ system is different from that of pure O₂, shifting the boiling temperature of liquid O₂. Figure 3 shows χ_{ti} and b_0 with x. The χ_{ti} increases with the increase of x. Hence, O₂ molecules must form a compound with CO₂ molecules, as suggested above. On the other hand, the b_0 decreases until x = 0.2 and oscillates with the increase of x.

The above interesting data must be explained by the constant b_0 , which indicates the contribution of pure O_2 in the O_2-CO_2 system. We can presume that the pure O_2 , which is not associated with the compound formation with CO_2 , shows the same magnetism as the pure solid O_2 . Then, the contribution of the pure O_2 and the component O_2 in the O_2-CO_2 compound to the observed magnetism can be separatively determined as follows. The total weight of O_2 is described by the sum of the weight of pure O_2 and that of the component O_2 in the O_2-CO_2 compound, as given by eqs 2 and 3

$$m_{\rm O} = m_{\rm O,p} + m_{\rm O,c} \tag{2}$$

$$m_{\rm O,p} = b_{\rm O} \cdot m_{\rm O} \tag{3}$$

Here, $m_{\rm O}$ is the total weight of O₂ in the sample cell, $m_{\rm O,p}$ is the weight of the pure O₂, and $m_{\rm O,c}$ is the weight of the component O₂. Then, $b_{\rm O}$ and $m_{\rm O}$ can express $m_{\rm O,c}$

$$m_{0,c} = (1 - b_0) \cdot m_0$$
 (4)

The mole fraction x_{comp} of CO₂ in the O₂-CO₂ compound is described by $m_{\text{O,c}}$ and m_{CO} , as shown by eq 5

$$x_{\rm comp} = \frac{m_{\rm CO}}{m_{\rm O,c} + m_{\rm CO}} = \frac{m_{\rm CO}}{(1 - b_{\rm O}) \cdot m_{\rm O} + m_{\rm CO}} = \frac{x}{b_{\rm O}(x - 1) + 1}$$
(5)

Figure 3. Changes of χ_{ti} and b_0 with x. (A): χ_{ti} vs x and (B): b_0 vs x.

Here, m_{CO} is the weight of CO₂ in the sample cell. The temperature independent magnetism should stem from the O₂–CO₂ compound. Therefore, the observed χ_{ti} must be recalculated using the weight of O₂ in the O₂–CO₂ compound to get the correct magnetic susceptibility $\chi_{ti,c}$ per unit mass of the component O₂ in the O₂–CO₂ compound with eq 6

$$\chi_{\rm ti,c} = \chi_{\rm ti} \cdot \frac{m_{\rm O}}{m_{\rm O,c}} = \chi_{\rm ti} \cdot \frac{1}{1 - b_{\rm O}}$$
 (6)

Thus, the variations of $\chi_{ti,c}$ and x_{comp} with x are obtained, as shown in Figure 4. There are clear stepwise relationships for both of $\chi_{ti,c}$ and x_{comp} . Although the relationship between b_0

Figure 4. Changes of the temperature independent magnetism $\chi_{ti,c}$ of O₂ and the CO₂ mole fraction, x_{comp} , of the O₂-CO₂ compound with the mole fraction *x* of CO₂.

and *x* above x = 0.2 is complex, simple $\chi_{ti,c}$ versus *x* and x_{comp} versus *x* relations can be obtained by the separation of O₂ into pure O₂ and the component O₂. So far, we cannot determine precisely the step position in Figure 4. However, these stepwise changes strongly suggest the formation of the stoichiometric compound of O₂ and CO₂ whose composition depends on the CO₂ content. Unfortunately, only magnetic susceptibility data cannot determine directly the structure of the O₂–CO₂ compound showing the temperature-independent magnetism, although the temperature-independent magnetism suggests the antiferromagnetic interaction between O₂ spins.

Acknowledgment. This work was funded by the Grant in-Aid for Scientific Research, Grant B from the Japanese Government.

References and Notes

(1) DeFotis, G. C. Phys. Rev. 1981, B23, 4717.

(2) Kanda, E.; Haseda, T.; Otsubo, A. Physica 1954, 20, 131.

(3) Barrett, C. S.; Meyer, L.; Greer, S. C.; Wasserman, J. J. Chem. Phys. 1968, 48, 2670.

(4) Baer, B. J.; Nicol, M. J. Phys. Chem. **1990**, *94*, 1073.

(5) Barrett, C. S.; Jordan, T. H.; Meyer, L. J. Chem. Phys. 1969, 51, 2941.

(6) Xie, J.; Enderle, M.; Knorr, K. Phys. Rev. 1997, B55, 8194.

(7) Damde, K.; Jodl, H.-J. J Low Temp. Phys. 1998, 111, 327.

- (8) Pace, E. L.; Bivens, R. L. J. Chem. Phys. 1970, 53, 748.
- (9) Barrett, C. S.; Meyer, L. J. Chem. Phys. 1965, 42, 107.
- (10) Klee, H.; Knorr, K. Phys. Rev. 1990, B42, 3152.
- (11) Jin, L.; Knorr, K. Phys. Rev. 1993, B47, 14 142.

(12) Stone, A. J. *The Theory of Intermolecular Forces*; Clarendon Press: Oxford, 1996, p 14.